M/G/1-típusú sorbanállás

Innen: testwiki
A lap korábbi változatát látod, amilyen imported>B.Zsoltbot 2025. január 31., 13:31-kor történt szerkesztése után volt. (Jegyzetek: források -> jegyzetek, wp clean AWB)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez

A sorbanállás-elméletben az M/G/1-típusú sorbanállás olyan sorbanállási modell, ahol a beérkező entitások véletlenszerűek (M), a Poisson-folyamat szerint, a szolgáltatási idő (G) általános eloszlású, és egy kiszolgáló van.[1] A jelölés a Kendall-féle jelölést követi, és ennek a kiterjesztése a M/M/1-típusú sorbanállás, ahol a szolgáltatási idő exponenciális eloszlású. Az M/G/1-típusú sorbanállás modellezi a rögzített fejű merevlemez működését.[2]

A modell működése

A sorbanállás sztochasztikus folyamat, melynek állapottere {0,1,2,3...}, ahol a sorbanállók száma megfelel a számoknak. Az i - i+1 átmenet jelzi, hogy új sorbanálló tag érkezett. Az ilyen érkezések közötti időnek exponenciális eloszlása van, λ paraméterrel. Az i - i-1 átmenet jelzi, hogy egy tagot kiszolgáltak a sorból, és távozott. A kiszolgáláshoz szükséges idő általános eloszlási függvény szerint történik. Az érkezés és kiszolgálás közötti idő hossza valószínűségi változó, és feltételezhetően független más paraméterektől.

Sorbanállás hossza

Az állandósult sor hossz-eloszlásának generátor függvényét a Pollaczek–Khinchine transzformáció adja meg:[2]

Π(z)=(1ρ)(1z)G(z)G(z)z

ahol G(z)=B*[[λ(1z)] and B* a kiszolgálási idő eloszlásának Laplace–Stieltjes transzformációja. A Pollaczek–Khinchine-formula megadja a rendszer átlagos sorbanállási hosszát és az átlagos várakozási időt.[3][4] Mivel az érkezéseket a Poisson-folyamat határozza meg, az érkezési elmélet érvényes.

M/G/1 típusú Markov-lánc

Tekintsük az M/G/1 sorbanállás beágyazott Markov-láncát, ahol az érkezés után azonnali időpontokat nézzük. Az ügyfélt zéró másodperc alatt kiszolgálják. A távozások között, 0, 1, 2, 3,…érkezés lehetséges. Így a lánc i–ből i-1, i, i+1, i+2…be mozoghat, ….[5] A beágyazott Markov-lánc átmeneti mátrixa:

P=(a0a1a2a3a4a0a1a2a3a40a0a1a2a300a0a1a2000a0a1)

ahol:

av=0eλu(λu)vv!dF(u) for v0

és F(u) a kiszolgálási idő eloszlása, λ a Poisson-féle érkezési ráta a sorba. A Markov-láncot a generátor mátrixxal, vagy mátrix blokkal, az M/G/1-típusú Markov-láncnak hívják, mely kifejezést M. F. Neuts-től származik.[6][7][8] Egy stacionárius M/G/1-típusú Markov-lánc a Ramaswami-formulával számítható.[8]

Több kiszolgáló esete

Egy M/G/k-típusú sorbanállás, ahol k>1 számú kiszolgáló van, még nyitott probléma.[9] Ebben a modellben, az érkezések Poisson-folyamat szerint történnek, és bármely kiszolgáló elláthatja a bejövőt. Különböző szerzők számos közelítést alkottak a sorbanállás átlagos nagyságára, az átlagos késleltetési időre és az állandó eloszlásra.[10]

Irodalom

Kapcsolódó szócikkek

Jegyzetek

Sablon:Jegyzetek

  1. Gittins, John C. (1989). Multi-armed Bandit Allocation Indices. John Wiley & Sons. p. 77. Sablon:ISBN
  2. 2,0 2,1 Harrison, Peter; Patel, Naresh M. (1992). Performance Modelling of Communication Networks and Computer Architectures. Addison–Wesley.
  3. Sablon:Cite doi
  4. Sablon:Cite journal
  5. Sablon:Cite book
  6. Sablon:Cite journal
  7. Sablon:Cite doi
  8. 8,0 8,1 Sablon:Cite doi
  9. Sablon:Cite doi
  10. Sablon:Cite doi