Maass-formák
Ugrás a navigációhoz
Ugrás a kereséshez
A matematikában a Maass-forma vagy Maass-hullámforma egy, a komplex számok felső félsíkján értelmezett függvény, ami moduláris formaként transzformálódik. Elsőként Hans Maass tanulmányozta őket.Sablon:Harvtxt
Definíció
Legyen k félegész szám, s komplex szám, és Γ SL2(R) diszkrét részcsoportja. A Γ k súlyú Maass-formája az s Laplace-sajátértékkel egy, a komplex számok felső félsíkjáról a komplex számokba képező függvény, amire a következők teljesülnek:
- Minden -ra, és minden -ra .
- , ahol a k súlyú hiperbolikus Laplace-szerűen definiált .
- Az f függvény legfeljebb polinomiálisan nő a belső csúcsokban.
A gyenge Maass-forma hasonlóan definiálható, de a harmadik pont helyett a következő teljesül: Az f függvény a belső csúcsokban legfeljebb lineáris exponenciálisan nő. Továbbá f harmonikus, ha a Laplace-operátor megsemmisíti.
Források
- Sablon:Citation
- Sablon:Citation
- K. Bringmann, A. Folsom, Almost harmonic Maass forms and Kac–Wakimoto characters, Crelle's Journal, Volume 2014, Issue 694, Pages 179–202 (2013). DOI: 10.1515/crelle-2012-0102
- W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-Functions’', Inventiones Mathematicae, 149, pp. 489–577 (2002). Section 4. DOI: 10.1007/BF01329622.
- Sablon:Cite web