Fresnel-egyenletek

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

A Fresnel-egyenletek megadják, hogy a beeső fény intenzitásának hányad része verődik vissza, illetve hányad része lép be a másik közegbe, amikor egy fénynyaláb két különböző közeg határfelületéhez érkezik. Az összefüggéseket az éterelméletből levezetve Augustin-Jean Fresnel írta fel először, ezért róla kapták nevüket. Fizikailag helyes megalapozást azonban csak később a Maxwell-egyenletek megszületése után nyertek.[1]

Polarizált eset

Az egyik egyenlet azt az esetet írja le, amikor a fény polarizációja párhuzamos a fényt visszaverő felülettel, a másik eset pedig azt írja le, amikor a polarizáció merőleges a felületre.[2]

F (λ,θ')=|cosθ'(v+κj)cosθcosθ'+(v+κj)cosθ|2,      F (λ,θ')=|cosθ(v+κj)cosθ'cosθ+(v+κj)cosθ'|2

Mivel a λ hullámhossztól függő törésmutató fémeknél komplex szám, ezért a törésmutató valós részét v, a képzetes részét κ jelöli. A j pedig az imaginárius egység. A θ' a felület normálvektora és a megvilágítási irány szöge, a θ pedig a visszaverődési irány és a felületi normálvektor szöge.

Polarizálatlan eset

A nem poláros fény ábrázolására az egyik szokásos eljárás, hogy a hullám elektromos térerősségvektorát két egymásra merőleges összetevőre bontjuk ( E  és E ) majd összegezzük. A két összetevő amplitúdója azonos, átlagos értéke egyenlő egymással, de közöttük rendezetlen és gyorsan változó fázisviszonyok vannak.[3] A továbbiakban az amplitúdókat egységnyinek tekintjük, azaz:

|E |=|E |=1

Felhasználva a vektorok skaláris szorzásának az abszolútértékre vonatkozó következő azonosságát:

|a2|=a2=aa=|a||a|cos(0)=|a|2

valamint a skaláris szorzás disztributivitása miatt használható binomiális tételt, a következő egyenlethez jutunk:

F(λ,θ')=|F (λ,θ')1/2E +F (λ,θ')1/2E |2|E +E |2=F (λ,θ')+F (λ,θ')2

Jegyzetek

Sablon:Jegyzetek

  1. Simonyi Károly: A fizika kultúrtörténete, Gondolat Kiadó, Budapest, 1981)
  2. Dr Szirmay-Kalos L, Antal Gy, Csonka F: Háromdimenziós grafika, animáció és játékfejlesztés 118. old. Budapest, Computer Books, 2003. Sablon:ISBN
  3. Alvin Hudson, Rex Nelson: Útban a modern fizikához, 960. old. LSI Oktatóközpont, 1994. Sablon:ISBN