Teljes páros gráf
Ugrás a navigációhoz
Ugrás a kereséshez
Sablon:Gráf infobox A teljes páros gráf olyan páros gráf, ahol mindkét partíció minden csúcsára fennáll, hogy vezet belőle él a másik partíció minden csúcsába. A teljes k-részes gráf speciális esete, ahol k=2.
Definíció
Teljes páros gráfnak nevezünk valamely páros gráfot, ha bármely és csúcspárra létezik él.
szimbólummal jelöljük azt a teljes páros gráfot, ahol és . A jelölés Kazimierz Kuratowski lengyel matematikus nevét őrzi.
Tulajdonságok
- a gráf csúcsot és élt tartalmaz
- a Kuratowski-tétel szerint síkbarajzolható gráf nem tartalmazhat a gráffal topologikusan izomorf részgráfot.
- a definíció következményeként
- a gráf összefüggő
- élgráfjai bástyagráfok
- csillagkromatikus száma .[1]
Speciális esetek
Egy Km,n teljes páros gráf akkor és csak akkor körmentes, ha m=1 vagy n=1. Ilyen esetben lehet beszélni csillaggráfról (illetve csillagtopológiáról):
-
S3 = K1,3
-
S4 = K1,4
-
S5 = K1,5
-
S6 = K1,6
Speciális jelentősége van még a gráfok síkbarajzolhatóságában a K3,3 gráf (három ház–három kút-gráf):
-
K3,3
Ha m=n, akkor a gráf csúcstranzitív.