Power-to-Gas

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

A Power-to-gas (rövidítve P2G vagy PtG, magyarra a „Villanyenergia gázzá konvertálása” körülírással fordítható, „áram → gáz”-ként lehet hivatkozni rá) egy energiagazdálkodási koncepció, illetve technológia. Ennek alkalmazásával a villamos energiából több lépésben gáznemű tüzelőanyagot állítanak elő, többnyire elektrolízis és kémiai, biológiai eljárások alkalmazásával. Ez a gáz sokkal egyszerűbben és gazdaságosabban tárolható, mint a villamos energia. Főbb felhasználási területei:

  • üzemanyagként különösen gépjárművek, repülőgépek és hajók esetén
  • vegyipari alapanyagként
  • villamos generátorok hajtására is alkalmazható elsődleges tüzelőanyagként gázerőművekben, vagy gázmotorok hajtására
  • reverzibilis tüzelőanyag-cellák üzemanyagaként
  • földgázhoz hozzátáplálásra
  • szintézisgázként közvetlenül felhasználva vagy matanol előállítására
  • enzimek kaszkádreakcióival etanol és propanol előállítására

Ez a tüzelőanyag leggyakrabban vagy hidrogén, vagy metán. Az elektrolízis elsődleges terméke az oxigén és a hidrogén. A hidrogént földgázhoz hozzátáplálásra, vagy például a közlekedésben hidrogéncellákhoz lehet közvetlenül felhasználni.

Az elektrolízisből keletkező hidrogén és szén-dioxid felhasználásával például az ún. Sabatier-reakció alkalmazásával vagy más metanizációs eljárásokkal metángáz állítható elő. Ez az átalakítás általában további 8% energiakonverziós veszteséggel jár, de a metán széleskörű felhasználási lehetőségei kompenzálják ezt. További szintézis-eljárásokkal például LPG-vé alakítható.

Enzimek alkalmazásával az eljárás végterméke etanol vagy propanol is lehet.

A villamos továbbító hálózatokat meglehetősen megterheli a napjainkban terjedő alternatív energiaalkalmazások áramfelvétele, például a villanyautók, a hőszivattyús fűtési rendszerek. A P2G metán alkalmazásához a rendelkezésre álló, már kiépített földgáz-infrastruktúrát lehetne felhasználni, ezáltal:

  • ki lehet váltani a nem megújuló földgázt például a P2G metánnal, a fűtési rendszerek erre áthangolhatóak
  • a smart grid rendszerekhez lehetne ezzel szállítani a tüzelőgázt, és a villamos energiát decentrálisan ebből előállítani

Ebben az esetben a rendszer össz.-hatásfoka például az egyenáramú energiatovábbító rendszereket is meghaladná.

A P2G története

A szélenergia segítségével elektromosan előállított hidrogén energiahordozóként történő felhasználási lehetősége már a 19. század közepén felbukkant. Nollet belga professzor nyújtott be erre vonatkozóan egy javaslatot 1868-ban.[1] 1874-ben Jules Verne írt egy hidrogéngazdaságról.[2] Maga az ötlet technikailag először 1895-ben valósult meg, amikor szélerőművek úttörője, a dán Poul la Cour szélerőműhöz csatlakoztatott egy elektrolízis berendezést, mely durranógázt szolgáltatott a közeli Askov iskola megvilágításához. [1]

A kilenc fokozatú technológiai készültségi skála szerint osztályozva a P2G metántermelés 2017-ben a 7. szint („üzemben lévő prototípus”) és 8. szint („minősített rendszer, amely igazolja a felhasználási területének megfelelő funkcionalitását”) közé került besorolásra.[3]

2018 májusában 128 P2G kutatási és bemutatólétesítmény működött Európában az átadás és a tervezés különböző szakaszaiban; 63 közülük már működött. [4]

A támogatásoknak köszönhetően napjainkban is nagyon sok pilot-projekt üzemel Nyugat-Európában, főleg Németországban. Ezeknek az elsődleges célja a P2G eljárás továbbfejlesztése és kommercializációja.

Tárolás és továbbítás

A P2G eljárásokkal biztosítható az energiatermelés és energiafelhasználás kiegyensúlyozása. A csúcsidőn kívüli és többlet villamos energiából az eljárással hidrogén vagy metán állítható elő, ami energiaigény esetén, például csúcsidőben, vagy a megújuló források kiesése esetén ismét villamos energiává alakítható (nyilván ez az oda-vissza alakítás veszteséggel jár, ezt be kell kalkulálni a rendszer működésébe). Hosszútávon például Németországban számolnak a földgázüzem P2G-vel való kiváltásával.

Nagyon sok helyen a földgázhálózatokat korábban városi gáz továbbítására használták, az 50-60% hidrogént tartalmazott (napjainkban ez az érték nem haladhatja meg a 10%-ot). A földgáz jellemzően 85-98%-ban tartalmaz metánt. A pillanatnyi német földgáz-tárolókapacitás a 200 000 GWh is meghaladja, ami az ország több hónapos energiaigénynek a kielégítésére elég – ezzel szemben például a teljes német szivattyúturbinás tárolókapacitás mindössze 40 GWh. [5]

Az energiatovábbítás a gázhálózatokon kevesebb mint 0,1% veszteséggel jár, míg a villamoshálózatok vesztesége nagyjából 8%. A kilowatt-óránkénti tárolási költségek becslések szerint 0,10 euróra rúgnak a hidrogén és 0,15 euróra a metán esetén.[6] A meglévő földgázvezetékek P2G használatát az EU NaturalHy projekt[7] és az USA DOE [8] is vizsgálta.

Hatásfok

2013-ban a P2G technológiára épülő tárolórendszerek hatásfoka még jóval 50% alatt maradt. Napjainkban a kombinált ciklusú erőművekben a P2G hatásfoka már meghaladhatja a 60%-ot, de ez még mindig jelentősen elmarad a szivattyúturbinás rendszerek (PHES, pumped hydroelectric energy storage) 70-80%-os hatásfokától.

Egy 2015-ben, az Energy and Environmental Science-ben közzétett tanulmány szerint reverzibilis szilárd oxidos tüzelőanyag-cella alkalmazásával és a hulladékhő megfelelő alkalmazásával ez az érték viszonylag alacsony ráfordítással 70%-ra emelhető. [9]

Egy másik, 2019-ben megjelentetett tanulmány szerint ez a megoldás továbbvihető a technológiai nyomás növelésével, ez esetben már a 80%-os hatásfok sem kizárt. [10] A fentiek alapján kijelenthető, hogy a technológia napjainkban jelentős továbbfejlesztések alatt áll, az elvárható hatásfok-értékek gyakorlatilag évről-évre javulnak. A lenti táblázat bár jó áttekintést ad az eljárásokról, 2011-es keltezésű, azaz elavultnak tekinthető.

Teljes energiaátalakítási hatékonyság alkalmazott konverziók és tüzelőanyagok szerint
Tüzelőanyag Hatásfok Körülmények
Konverzió: villanyáram → gáz
Hidrogén 54-72% 200 bar nyomás
Metán (SNG) 49-64%
Hidrogén 57-73% 80 bar nyomás (földgázvezeték)
Metán (SNG) 50-64%
Hidrogén 64-77% nyomás nélkül
Metán (SNG) 51-65%
Konverzió: villanyáram → gáz → villanyáram
Hidrogén 34-44% 80 bar nyomás és 60% villanyáram visszanyerés
Metán (SNG) 30-38%
Konverzió: villanyáram → gáz → villanyáram + hőhasznosítás
Hidrogén 48-62% 80 bar nyomás és 40-45% villanyáram / hő visszanyerés
Metán (SNG) 43-54%
Forrás: Fraunhofer IWES, 2011 február (német) [11]

Ökológiai egyenleg

A P2G egyik – talán legkomolyabb – előnye, hogy fosszilis források nélkül képes tüzelőanyagot előállítani, így a felhasználás során felszabaduló széndioxid – a teljes folyamatot figyelembe véve – nem növeli a levegő széndioxid tartalmát, azaz a folyamat széndioxid (kibocsátás) semleges[12] :

Árak

Kijelenthető, hogy a P2G-vel előállított áram jelen árképzés szerint még nem piacképes. Nyilván figyelembe kell venni, hogy ez az energiahordozó megújuló technológiákon alapul, de a technológiája még nem kiforrott, így egyelőre nem tud versenyre kelni a többi (fosszilis eredetű) piaci energiahordozóval:

Energiahordozó Ára (adó nélkül) Ára (adóval) Egyéb adatok

(fűtőérték)

Benzin (Super) 7,31 ct/kWh[13] 14,8 ct/kWh 8,77 kWh/kg
Dízel 4,73 ct/kWh[13] 12,2 ct/kWh 9,86 kWh/kg
Földgáz 2,19 ct/kWh[13] 8,2 ct/kWh[14] 10-13,9 kWh/kg
Áram 14,1 ct/kWh[13] 30,22 ct/kWh
Hidrogén 12-20 ct/kWh[15] 28 ct/kWh 33,3 kWh/kg
P2G metán (2020)[16] 17-25 ct/kWh 15,39 kWh/kg
P2G metán (2030)[16] 13-20 ct/kWh
P2G metán (2050)[16] 10-13 ct/kWh
A táblázat összehasonlításként a német árakat tartalmazza. Az árak (adóval) oszlopban a 2019-es árak szerepelnek.

A P2G árak a jövőbeli becslésekkel együtt szerepelnek.[16]


A P2G energiagazdálkodási szerepe

Az energiatermelési rendszerekben egyre nagyobb hangsúly jut a megújuló energiák alkalmazásának. Ez egyfelől, főleg környezetvédelmi szempontból egy rendkívül fontos és üdvözlendő fejlemény, de a meglevő struktúrákat, az energiatovábbító és elosztó rendszereket komoly kihívások elé állítja. Az energiatovábbító rendszerek nincsenek igazán felkészülve az új energiaszállítási irányokra, és a hálózati energiatárolás sem megoldott még.


Jelenleg az energiahálózatok csak nagyon korlátozott mértékben alkalmasak energiatárolásra, de az újonnan felmerülő energiaingadozásokat ezek a rendszerek (például szivattyúturbinás tározóművek) sem képesek lassan a fejlődés dinamikájával követni. A P2G ebből a szempontból egy különleges megoldást kínál, hiszen az megújuló energiákat gázzá alakítja át, így azok a továbbiakban nem a villamoshálózat határait feszegetnék tovább, hanem a sokkal nagyobb és gazdaságosabb gázrendszerek tárolókapacitását terhelnék meg. Ráadásul míg a villamoshálózatban mindig a pillanatnyi energiamennyiséget kell megbízható módon kezelni, a gáztározás esetén ez az időkorlát sokkal tágabb.

Alkalmazott eljárások

Áram → metán

Az (angolul power to methane) eljárással a (főleg megújuló forrásokból nyert) villamos áramot első lépcsőben vízbontáshoz használják. Az elektrolízis során nyert hidrogént metanizációs eljárással szén-dioxid hozzáadásával metánná alakítják. Ezt a gázt a földgázhálózatokhoz adagolják, ahonnan aztán a végfelhasználókon kívül például kombinált ciklusú erőművek is tüzelőanyagként veszik fel, illetve üzemanyagként is alkalmazható.

Szintetikus metán előállítása

A P2G-vel előállított szintetikus metángáz nagyon fontos szerepet játszhat a megújuló technológiák világában, mivel a villamos energiával szemben alacsony költségvonzattal tárolható, a hagyományos földgázvezetékeken szállítható, a földgázhoz keverhető, illetve (idővel) akár teljes egészében ki is válthatja azt. A P2G eljárás hatékonyságát jelentősen növeli, ha a szintetikus gáz előállításkor keletkező hulladékhő is felhasználásra kerül, például távfűtési célra.

Elektrolízis

A víz elektrolízise során az elektródokra vezetett egyenáram nyomán hő, hidrogén és oxigén keletkezik. Az oxigént a P2G eljárások jellemzőn nem használják fel, a folyamat melléktermékeként más célra az eljárásból elvezethető. A keletkező hidrogén közvetlenül is felhasználásra kerülhet, például hidrogéncellás járművek üzemanyagaként. Az elektrolízis folyamata az alábbi reakcióval jellemezhető:

2H2O+energia2H2+O2

A hidrogénnek az egyik legnagyobb felhasználója a vegyipar, mely napjainkban még jellemzően a fosszilis földgázból állítja elő a szükséges mennyiséget. A hidrogént többek között a finomítók használják fel, illetve ammónia és metanol előállításához is nagy mennyiségben van rá szükség. Csak Németországban, 2010-ben 60 TWh energiát használtak el előállításához, mely mennyiség legalább részben a megújuló energiával előállított hidrogénnel kiváltható.[17]

A napjainkban zajló P2G fejlesztések egyik fontos célja az elektrolízis eljárás hatásfokának az emelése, a hulladékhő arányának a csökkentése. Ezekben a kutatásokban fontos irány a szilárd oxidos tüzelőanyag-cella fejlesztése.[18]

Kémiai metanizáció
A metanizáció fázisai
A metanizáció fázisai

A metanizációs eljárások célja az elektrolízissel előállított hidrogén és szén-dioxid felhasználásával metángáz előállítása. A metán a hidrogénnel szemben egyrészt kevésbé illékony (nagyobb a molekulamérete), így könnyebben és hatékonyabban tárolható, másrészt tüzelőanyagként / üzemanyagként könnyebben felhasználható a már meglevő infrastruktúrákkal is. Harmadrészt továbbalakítható etanollá vagy propanollá.

A metán előállítása a következő reakció alkalmazásával történhet:

4H2+CO2CH4+2H2OΔHR=164,9kJmol

A fenti reakció exoterm, hőfelszabadulással jár. Maga a reakció két rész-reakcióval írható le:

(1) H2+CO2CO+H2OΔHR=+41,5kJmol
(2) 3H2+COCH4+H2OΔHR=206,4kJmol

Az első részreakció a WGS (Wassergas-Shift-Reaktion) endoterm, végterméke szénmonoxid és víz. A második részreakció egy Fischer–Tropsch-eljárással leírható exoterm folyamat, melynek eredményeként hő, metán és víz keletkezik. Amennyiben a reakció során keletkező hőt egyéb eljárásokra, például víz elgőzölögtetésére használják el, az átalakítás hatásfoka akár 16%-kal növelhető. A berendezés üzemeltetése jól kombinálható biogáz és víztisztító berendezésekkel, ahol sok szén-dioxid keletkezik melléktermékként, és sok hőt (gőzt) igényelnek technológiai eljárásaikhoz. [19]

Az átalakítás a Sabatier-folyamat felhasználásával is végrehajtható, ilyenkor a reakció magas hőmérsékleten és nyomáson történik, többnyire nikkel katalizátor jelenlétében. A reakció-hatékonyság növelésére ruténiumot és alumínium-oxidot is használnak.

Biológiai metanizáció

A metán biológiai előállításának az első lépcsője az elektrolízis, mely (többnyire) ebben az esetben is elektromos árammal történik. Az elektrolízis során viszont ügyelni kell a víz pH semlegességére és szobahőmérséklet fölötti hőmérsékletet kell tartani azt a bioreaktorban. A keletkező hidrogén metánná átalakítását a metanogén archeák (korábbi nevükön ősbaktériumok) végzik el. Ezeknek a mikroorgazmusoknak az alkalmazása lehetővé teszi, hogy alacsonyabb hidrogénkoncentráció esetén is végbemenjen a metanizáció. A biológiai átalakítás több lépcsőben zajlik; A metanogén archeák először kolonizálják a reaktort, majd a katódfelületeken megtelepedne enzimeket választanak ki, ezek segítségével a hidrogént metánná alakítják át.[20][21][22][23][24]

Egy fejlesztés alatt álló eljárásban a metanizációt közvetlenül a biogázüzemek fermentorában végeztetik el az archeákkal. Az eljárás egyik fontos újítása, hogy ide vezetik be a hidrogént, ahol jelentős mennyiségű széndioxid keletkezik a bomlási folyamatok végeredményeként. Ezzel az eljárással 95%-os metán-hozam érhető el úgy, hogy az itt keletkező hulladékhő továbbra is felhasználható marad.[25]

Áram → hidrogén

Az áram hidrogénné történő átalakítását jelenleg szinte kizárólag a elektrolízissel valósítják meg. Ez az eljárás voltaképpen az első résztechnológiája a P2G-nek, de természetesen önálló technológiaként is figyelembe lehet és kell venni, főleg annak tükrében, hogy csak Németországban 2010-ben 60 TWh energiát használtak fel a hidrogén előállításhoz. Ezt a hidrogénmennyiséget főleg a vegyipar használja fel, de a hidrogéncellás járművek (autók, buszok, vonatok stb.) is jelentős mennyiségű gázt igényelnek.

Áram → szintézisgáz

A metán vízgőzzel való reakciójakor (1000 °C, nikkel katalizátor jelenlétében) keletkezik a szintézisgáz (CO és H2 bármilyen arányú elegye), melyből több szerves vegyületet pl. metanolt állíthatnak elő, ezért fontos vegyipari alapanyag. A szintézisgáz az alapanyaga a szintetikus üzemanyagoknak.

Áram → etanol / propanol

Az etanol és propanol a vegyiparban igen keresett alapanyagoknak számítanak, így a P2G-vel kapcsolatos kutatások is részben ezeknek az alapanyagoknak az előállítására koncentrálnak. Egy nemzetközi kutatócsoport, ami főleg a bochumi Ruhr Egyetem kutatóiból és az Új-Dél-Wales Egyetem szakembereiből állt össze, egy meglehetősen újszerű eljárást talált. Megállapításuk szerint bizonyos enzimek kaszkád-reakcióival (egymást követő spontán reakciófázisok) közvetlenül és biológiai úton is előállítható a P2G végtermékeként az etanol és a propanol. „Az enzimek kaszkádreakcióinak átvitele a katalitikusan aktív nanorészecskékre döntő lépés lehet a katalizátorok tervezésében” – fejti ki az elvet Wolfgang Schumann, a kutatócsoport vezetője. [26]

Jegyzetek

Sablon:Jegyzetek

Fordítás