Metszési szám (gráfelmélet)

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez
A Heawood-gráf egy síkba rajzolása három metszéssel. Ez a lehetséges legkisebb számú metszéspont a gráf összes lerajzolása közül, ezért a gráf metszési száma cr(G) = 3.

A gráfelméletben egy G gráf cr(G)-vel jelölt metszési száma a G gráf összes síkbeli reprezentációja közül az élek metszéspontjainak lehetséges minimális száma. Egy gráf akkor és csak akkor síkbarajzolható gráf, ha a metszési száma 0.

A metszési szám először Turán téglagyári problémája néven (Turán's brick factory problem) merült föl, melyben Turán Pál a Km,n teljes páros gráf metszési számára kérdez rá.[1]

A gráfok metszési számának meghatározása nagyon nehéz feladat, részben a lehetséges lerajzolások óriási száma és áttekinthetetlensége miatt. Precízen ezért csak nagyon kicsi vagy nagyon speciális gráfok metszési számát sikerült meghatározni.[2]

Története

A metszési szám vizsgálatát 1944-ben Turán Pál kezdeményezte egy gyakorlati probléma kapcsán. Munkaszolgálatosként téglával megrakott vasúti kocsikat kellett tologatniuk a kemencéktől a raktárépületekig. A komoly nehézséget a kereszteződések okozták. Ha n kemence és m raktárépület van, továbbá minden kemence és raktár között van sín, akkor a legjobb esetben cr(Km,n) kereszteződés van.[2]

Zarankiewicz megpróbálkozott Turán téglagyári problémájának megoldásával;[3] bizonyításában volt egy hiba, de sikerült a Km,n teljes páros gráf metszési számára érvényes felső becslést adnia:

cr(Km,n)n/2(n1)/2m/2(m1)/2

A sejtés, hogy ez az egyenlőtlenség valójában egyenlőség, Zarankiewicz-sejtés néven is ismert.

A teljes gráf metszési számának meghatározását először Anthony Hill vetette fel, írásban 1960-ban jelent meg.[4] Hill és társa, John Ernest konstruktivista művészek voltak, akik nem elégedtek meg a problémafelvetéssel, hanem egy Richard Guy által 1960-ban publikált dolgozatban sejtésüket is megfogalmazták a metszési szám felső határára.[4]

Richard K. Guy (1972) sejtése szerint a Kn teljes gráf metszési száma

cr(Kn)=14n2n12n22n32.

Jelenleg mindkét probléma megoldatlan, néhány speciális eset kivételével; az alsó határok megadásában történt néhány előrelépés, ahogy Klerk et al. jelenti 2006-ban.[5]

A Michael O. Albertson által 2007-ben megfogalmazott Albertson-sejtés szerint az összes n kromatikus számú gráf közül a Kn teljes gráf rendelkezik a minimális metszési számmal. Tehát ha Richard Guy a teljes gráfok metszési számára vonatkozó sejtése igaz, minden n-kromatikus gráf metszési száma nagyobb vagy egyenlő a sejtésben szereplő képletnél. Jelenleg n ≤ 16-ra igazolt a sejtés érvényessége.[6]

Variációk

A metszési szám meghatározása megengedi, hogy a gráf éleit tetszőleges görbék jelöljék; az egyenes metszési szám (rectilinear crossing number) megköveteli, hogy az élek egyenes szakaszokként legyenek megrajzolva; értéke eltérhet a metszési számtól. Különösen, a teljes gráf egyenes metszési száma megegyezik az n általános helyzetű pontba rajzolható konvex négyszögek minimális számával, ami a Happy End-probléma közeli rokona.[7]

Komplexitás

Általánosan tekintve, egy gráf metszési számának meghatározása nehéz feladat, részben a lehetséges lerajzolások óriási száma és áttekinthetetlensége miatt. Precízen ezért csak nagyon kicsi vagy nagyon speciális gráfok metszési számát sikerült meghatározni.[2] Garey és Johnson 1983-ban megmutatták, hogy NP-teljes probléma.[8] Valójában ha a problémát korlátozzuk a 3-reguláris gráfokra, még úgy is NP-teljes marad.[9]

Általában viszonylag könnyű egy gráf legjobb lerajzolásának megsejtése, az alsó korlát bizonyítása, ami gondot okoz.[2] Legtöbbször sok lépésben, egyre kifinomultabb leszámlálásokon keresztül lehet közeledni a célhoz.[2][10][11][12][13]

A pozitív oldalt nézve, léteznek hatékony algoritmusok annak meghatározására, hogy a metszési szám kisebb-e egy k konstansnál – más szavakkal, a probléma az FPT-problémaosztályba (fixed-parameter tractable, rögzített paraméter mellett kezelhető) tartozik.[14]

Nagyobb k értékekre, pl. |V|/2 -re a feladat továbbra is nehéz marad. Korlátos fokszámú gráfok cr(G) értékének meghatározására léteznek hatékony közelítő algoritmusok.[15] A gyakorlatban heurisztikus algoritmusokat használnak, például egy egyszerű algoritmust, ami élek nélküli csúcspontokkal kezd, majd egyenként adja hozzá az új éleket olyan módon, hogy azok a lehető legkevesebbszer metsszék egymást. Ilyen algoritmust használ a Rectilinear Crossing Number[16] elosztott számítási projekt is.

3-reguláris gráfok metszési számai

A Tutte-féle 12-cage

Az 1 és 8 közötti metszési számokhoz tartozó legkisebb 3-reguláris gráfok ismertek Sablon:OEIS. Az 1 metszési számúak közül a legkisebb a K3,3 teljes páros gráf, 6 csúcsponttal. A legkisebb 2 metszési számú a Petersen-gráf, 10 csúcsponttal. A legkisebb 3 metszési számú 3-reguláris gráf a Heawood-gráf, 14 csúcsponttal. A legkisebb 4 metszési számú 3-reguláris gráf a Möbius–Kantor-gráf, 16 csúcsponttal. A legkisebb 5 metszési számú 3-reguláris gráf a Papposz-gráf, 18 csúcsponttal. A legkisebb 6 metszési számú 3-reguláris gráf a Desargues-gráf, 20 csúcsponttal. A négy darab 7 metszési számú 3-reguláris gráf közül egyik sem jól ismert, 22 csúcspontjuk van.[17] A legkisebb 8 metszési számú 3-reguláris gráf a McGee-gráf avagy (3,7)-cage gráf, 24 csúcsponttal.

Exoo 2009-es sejtése szerint a 11 metszési számú legkisebb 3-reguláris gráf a Coxeter-gráf, a 13 metszési számú pedig a Tutte–Coxeter-gráf a 170-esé pedig a Tutte 12-cage.[18][19]

A metszésiszám-egyenlőtlenség

Az igen hasznos metszésiszám-egyenlőtlenség, amit egymástól függetlenül fedezett fel Ajtai, Chvátal, Newborn és Szemerédi,[20] valamint Leighton,[21] a következőt állítja: ha egy G (irányítatlan, hurkok és többszörös élek nélküli) gráfra n csúccsal és e élszámmal igaz, hogy

e>7n,

akkor

cr(G)e329n2.

A 29-es konstans az eddig ismert legjobb eredmény, Ackerman érte el[22] (a korábbi, 33,75-ös konstans, e > 7,5 n esetre Pach és Tóth eredménye;[23]); a 7-es konstans 4-re csökkenthető, de akkor a 33,75 helyére a gyengébb 64-es értéket kell írni.

Leightont a VLSI-tervezésben várható hasznosságuk motiválta a metszési számok tanulmányozásában. Később Székely[24] felismerte, hogy az egyenlőtlenség az illeszkedési geometria területén néhány fontos tétel igen egyszerű bizonyításához vezetett, pl. a Beck-tétel és a Szemerédi–Trotter-tétel esetében; Tamal Dey felhasználta a geometriai K-halmazok felső korlátainak bizonyításában is.[25]

Olyan gráfokra, melyek girthparamétere 2r-nél nagyobb és e ≥ 4n Pach, Spencer és Tóth[26] a következőre javította az egyenlőtlenséget:

cr(G)crer+2nr+1..

Jegyzetek

Sablon:Jegyzetek

  1. Sablon:Cite journal
  2. 2,0 2,1 2,2 2,3 2,4 Tóth Géza: Gráfok metszési számai és a k-halmaz probléma. Doktori disszertáció PDF
  3. Sablon:Cite journal
  4. 4,0 4,1 Sablon:Cite journal
  5. Klerk, E. de, Maharry, J., Pasechnik, D.V., Richter, B., & Salazar, G. (2006). Improved bounds for the crossing numbers of Km,n and Kn. Sablon:Wayback SIAM Journal on Discrete Mathematics 20(1), 189-202, 2006
  6. Sablon:Cite journal
  7. Sablon:Cite journal
  8. Sablon:Cite journal
  9. Sablon:Cite journal
  10. L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl: Convex quadrilaterals and k-sets. In: Towards a theory of geometric graphs, Contemporary Math. 342 Amer. Math. Soc., Providence, RI, 2004, 139–148.
  11. B. Abrego, S. Fernández-Merchant: A lower bound for the rectilinear crossing number, Graphs and Combin. 21 (2005), 293–300.
  12. J. Balogh, G. Salazar: k-sets, convex quadrilaterals, and the rectilinear crossing number of Kn, Discrete Comput. Geom. 35 (2006), 671–690.
  13. O. Aichholzer, J. García, D. Orden, P. Ramos: New lower bounds for the number of (≤ k)-edges and the rectilinear crossing number of Kn, arXiv:math.CO/0608610 v2, 2006.
  14. Sablon:Cite journal; Sablon:Cite journal
  15. Sablon:Cite journal
  16. Rectilinear Crossing Number on the Institute for Software Technology at Graz, University of Technology (2009).
  17. Sablon:MathWorld
  18. Exoo, G. "Rectilinear Drawings of Famous Graphs".
  19. Pegg, E. T. and Exoo, G. "Crossing Number Graphs." Mathematica J. 11, 2009.
  20. Sablon:Cite conference
  21. Sablon:Cite book
  22. Sablon:Cite web
  23. Sablon:Cite journal
  24. Sablon:Cite journal
  25. Sablon:Cite journal
  26. Sablon:Cite journal