Elosztó típusú sorban állás
A sorbanállás-elméletben az elosztó típusú sorban állásra az jellemző, hogy a beérkező feladatokat szétosztják számos kiszolgáló között, és kiszolgálás után újra összeállítják őket.[1]

Ezt a modellt gyakran alkalmazzák párhuzamos számítógép-architektúráknál, és rendszereknél, ahol különböző helyről, különböző beszállítótól érkeznek termékek (raktárak, üzemek). Ennél a modellnél a fő előny a beérkező feladatok elvégzésnek gyorsítása. Ez a modell a párhuzamos-, és elosztott rendszerek egyik fő jellemzője.[2] Azt a változatot, amikor a feladatok beérkezése a Poisson-folyamat szerint történik, és a kiszolgálási idők exponenciálisan elosztottak, Flatto–Hahn–Wright-modellnek hívják (FHV)[3][4]
Működés
A villaszerű bemenetekre érkező feladat N alfeladattá válik szét, melyeket N szerver szolgál ki. A kiszolgálás után az alfeladatok addig várnak, míg a többi alfeladat feldolgozása is befejeződött, majd ezután összeállítják őket és elhagyják a rendszert.[2] Ahhoz, hogy a rendszer stabil maradjon, az szükséges, hogy a beérkezések sebessége kisebb legyen, mint a kiszolgálás sebessége a kiszolgáló pontokon.[5]
Alkalmazás
Ezt a modellt használják a RAID rendszereknél,[6] párhuzamos számítógép-architektúráknál, és raktárak működtetésénél.[2]
Válaszidő
A válaszidő egyenlő azzal az idővel, amíg egy feladat a rendszerben tartózkodik. Ko és Serfőző közelítést ad arra az esetre, amikor a kiszolgálási idők exponenciálisan elosztottak, és a feladatok a Poisson-folyamat szerint, vagy a normális eloszlás szerint érkeznek.[7]
Átlagos válaszidő
Egzakt képlet az átlagos válaszidőre csak a két szerveres esetre ismert (N=2), ahol a kiszolgálási idő exponenciális eloszlású (azaz,mindegyik szerver egy M/M/1-típusú sorbanállás modell). A válaszidő (a teljes idő, amíg a feladatok a rendszerben tartózkodnak):[8]
ahol
- a felhasználás
- a rendszerbe érkező feladatok üteme
- a teljes kiszolgálási idő az összes ponton
Ebben a helyzetben, amikor az egyes csomópontok M/M/1-típusú sorbanállás modellek, az átlagérték analízis alkalmazható az átlagos válaszidő közelítő kiszámításához.[9] Általános kiszolgálási idők esetére, amikor minden pont M/G/1-típusú sorbanállás modellként működik, Bacelli és Makowski ad közelítést.[10] Amikor a feladatok kiszolgálása megtörtént, akkor újra össze kell a sort állítani. Nelson és Tantawi publikációja ad támpontot a sor hosszára, ahol az összes szerver hasonló sebességgel dolgozik. .[8] Heterogén szerver sebességeknél és eloszlásoknál Li és Zhao publikációja ad közelítést.[11] A sorosan összeállító változatban (egymás utáni összeállítás) egy közelítő formula használható.[12]
Irodalom
- Sablon:CitLib
- Sablon:CitLib
- https://web.archive.org/web/20131029195204/http://pubs.doc.ic.ac.uk/forkjoin/forkjoin.pdf
- http://www.win.tue.nl/~iadan/que/h4.pdf
Kapcsolódó szócikkek
- Eloszlásfüggvény
- Valószínűségszámítás
- Statisztika
- Matematikai statisztika
- Poisson-folyamat
- Sorbanállási elmélet
- M/D/1-típusú sorbanállás
- M/M/c-típusú sorbanállás
- Pollaczek–Khinchine-formula
- M/G/1-típusú sorbanállás