Boltzmann-eloszlás

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

A matematikában, kémiában, és a fizikában a Boltzmann-eloszlás (Gibbs-eloszlásnak is szokták hívni)[1] egy valószínűség-eloszlás, vagy valószínűség-mérték, mely egy rendszer állapotainak eloszlását jellemzi.

Például a Boltzmann-eloszlás megadja, hogy egy elszigetelt rendszerben milyen valószínűséggel, illetve milyen gyakorisággal fordulhatnak elő egy adott energiával rendelkező molekulák.

Az eloszlást 1901-ben fedezte fel J. W. Gibbs a klasszikus statisztikus mechanika tanulmányozása kapcsán. Ezzel alapozta meg a kanonikus sokaság koncepcióját. Egy még általánosabb beállításban a Boltzmann-eloszlást Gibbs-mértéknek ismerik.

Definíció

A Boltzmann-eloszlás Ni / N részecskére, melyek i állapotban, Ei energiával rendelkeznek:

NiN=gieEi/(kBT)Z(T)

ahol kB a Boltzmann-állandó, T a hőmérséklet, gi, az Ei energiával rendelkező szintek száma; (néha az általánosabb „állapot”-ot használják a szintek helyett). N a részecskék teljes száma, és Z(T) a partíciófüggvény.

N=iNi,
Z(T)=igieEi/(kBT).

Más értelmezésben, egy jól definiált hőmérsékleten lévő egyedülálló rendszernél megadja annak a valószínűségét, hogy a rendszer a specifikált állapotban tartózkodik.

A Boltzmann-eloszlás csak azokra a részecskékre érvényes, melyek elég magas hőmérsékletűek, és sűrűségük elegendően alacsony ahhoz, hogy a kvantumhatások elhanyagolhatók legyenek, és a részecskék a Maxwell–Boltzmann statisztika szerint viselkednek. (Lásd még a Boltzmann-eloszlás deriválása cikket).[2][3]

A Boltzmann-eloszlást gyakran a β = 1/kT kifejezéssel írják le, ahol a β a termodinamikus béta. Az eβEi vagy a eEi/(kT) kifejezéseket, melyek egy állapot relatív valószínűségét adják meg, Boltzmann-tényezőnek hívják; gyakran előfordulnak fizikai és kémiai tanulmányokban.

Amikor az energia egyszerűen a részecske mozgási energiája:

Ei=12mv2,

akkor az eloszlás helyesen adja meg a gázmolekulák sebességének Maxwell–Boltzmann eloszlását, melyet Maxwell már 1859-ben megjósolt. A Boltzmann-eloszlás azonban jóval általánosabb. Például megjósolja a részecskesűrűség változásait gravitációs térben, ha Ei=12mv2+mgh. Valójában az eloszlás mindig alkalmazható, amikor a kvantumhatás elhanyagolható.

Néhány esetben, a folytonossági közelítés használható. Ha g(EdE állapotok E től E + dE energiával rendelkeznek, akkor a Boltzmann-eloszlás megjósolja az energia valószínűség-eloszlását:

p(E)dE=g(E)eβEg(E)eβEdEdE.

Ekkor g(E) az állapotok sűrűsége, ha az energiaspektrum folytonos. Az ilyen energiaeloszlást mutató klasszikus részecskék a Maxwell–Boltzmann-statisztika szerint viselkednek.

A klasszikus korlátok esetén, például E/(kT) nagy értékeinél, vagy kis állapotsűrűség esetén, amikor a részecskék hullámfüggvényei gyakorlatilag nem fedik át egymást, mind a Bose–Einstein-, mind a Fermi–Dirac-eloszlások Boltzmann-eloszlásokká válnak.

Deriválás

Jegyzetek

Sablon:Jegyzetek

Fordítás

Források

  • Sablon:CitLib
  • Magyarul: L. D. Landau – J. M. Lifsic – L. P. Pitajevszkij: Elméleti fizika V. Statisztikus fizika I. (Tankönyvkiadó, 1981) Sablon:ISBN

Sablon:Portál