Rasch-modell

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

A Rasch-modell[1] egy pszichometriában használt matematikai modell, mely Georg Raschról, megalkotójáról kapta nevét. A valószínűségi tesztelméletek (Item Response Theory, IRT) vagy „modern tesztelmélet”[2] egyik legismertebb modellje.[3][4] Az alábbi három változóval dolgozik:[2]

  1. egy egyénnek egy dichotóm tételre (helyes/helytelen; egyetért vagy sem; igaz/hamis stb.) adott válasza (melyre az egyszerűség kedvéért jelen szócikkben a „helyes” és „helytelen” fogalmakat használjuk.)
  2. a válaszadó személyre jellemző képesség, attitűd, vélemény stb., mely alapján válaszolt. (Ezt a tesztelméleti szakirodalomban egységesen „képességnek” nevezzük, akkor is, ha attitűdöt, véleményt stb. mérünk.)
  3. az itemet vagy tételt jellemző nehézségparaméter.

A modell szerint az egyén helyes vagy helytelen válaszának valószínűsége a nehézség- és képességparamétertől függ.[5]

A Rasch-modell viszonya az IRT modellekhez

A Rasch-modell egy tagját képezi a gyűjtőfogalomként használt valószínűségi tesztelméleteknek (IRT). Az IRT modellekben közös, hogy nem determinisztikusak, hanem valószínűségi alapon közelítik a személyek helyes válaszadását az egyes itemeken (ismert item- és személyparaméterek esetén). [Molnár, 2006] Innen származik a magyar szakirodalomban használt valószínűségi tesztelmélet elnevezés.

Az egyes IRT modellek két fő tulajdonság mentén különböztethetőek meg egymástól: (1) milyen matematikai modellt használnak, vagyis „milyen típusú összefüggést feltételeznek a személy képességparamétere és a helyes válasz valószínűsége között”,[3] illetve (2) hány paraméter mentén ragadják meg a jellemezni kívánt tételeket (itemeket).

A Rasch-modell matematikai alapját logisztikus függvény adja (szemben a normális eloszlásfüggvénnyel operáló többi IRT modellel[3]); illetve a Rasch modell az itemnehézséget, mint egyetlen, legfőbb paramétert használja a tételek jellemzésére (vagyis unidimenzionális), mely paraméter kizárólag bináris / dichotóm változó lehet. Mindezek alapján a Rasch-modell tekinthető a legegyszerűbb IRT modellnek.[5]

Az eredeti munkából kiindulva mára több eltérő matematikai modell létezik a modellcsaládban, melyek paraméterei csak részben egyeznek meg a leggyakrabban Rasch-modellként emlegetett, a szerző által 1960-ban publikált dichotóm modellel. (A modellt még maga Rasch kiterjesztette nem dichotóm adatokra is.[1][6]) A továbbiakban e dichotóm modell kerül részletesebb kifejtésre, illetve a „Rasch-modell” név is erre a konkrét modellre utal. A modellcsalád más tagjairól lásd részletesen például Fischer és Molenaar (2012)[7] vagy Rost (2001)[8] munkáját.

A modell alapkoncepciója

E matematikai modell kapcsolatot teremt a tételek nehézségét és a személyek képességét jellemző változók között. Ennek hátterében a következő feltételezések állnak:[9]

  • a könnyebb tételeket mindenki nagyobb valószínűséggel oldja meg helyesen, mint a nehezebbeket;
  • "a magasabb képességszintű emberek nagyobb valószínűséggel oldják meg jól a feladatokat, mint az alacsonyabb képességszintűek";[9] illetve
  • azokat a tételeket tekinti a modell nehezebbnek, melyeket kevesebben oldottak meg, és azokat könnyűnek, melyeket többen.

A modell a tétel nehézségét és a személy képességét egymáshoz viszonyítva definiálja, így a skálának nincs abszolút nulla pontja.[3]

A Rasch-modell matematikája

A Rasch-modell tehát egy valószínűségi alapú matematikai modell, mely logaritmikus transzformáció segítségével átalakítja az ordinális adatokat intervallumskálájúvá (így az értékek közötti különbségek mértéke is informatívvá válik).[9][10] Egy lehetséges megfogalmazás szerint a Rasch-modell megadja, milyen valószínűséggel válaszol helyesen egy ismert képességszinttel rendelkező személy egy ismert nehézségű tételre.[3][5] A nehézség- (θ) és képességparaméterek (δ) értékeit általában sztenderdizált formában használjuk, így átlaguk 0, szórásuk 1.[5] A két változót egy közös logit-skálán mérjük.[9]

A Rasch-modell leggyakoribb matematikai megfogalmazása a következő:[2][3][5]

p(Xij=1θi,δj)=e(θiδj) 1+e(θiδj) (1)

Az egyenlet bal oldala kifejezi tehát, hogy θi képességparaméterrel rendelkező i személy helyes válaszadásának valószínűségét (vagyis p(x=1)) keressük adott δj nehézséggel jellemezhető j tételen. A modell szerint e valószínűséget az a hányados adja (lásd az egyenlet jobb oldalát), melynek számlálója az Euler-féle számnak (e) a képesség- és nehézségparaméter különbségére emelt hatványa, nevezője pedig az ennél +1-gyel nagyobb érték. (Rasch ehhez az XX+1 függvényből indult ki munkája során, mint „az általam ismert legegyszerűbb olyan függvény, amely 0-tól 1-ig nő, ha x zérótól végtelenig növekszik”[1])

Az (1) egyenletből következően ha egy személy képességparamétere és egy item nehézségértéke megegyezik, akkor annak valószínűsége, hogy a személy helyesen oldja meg az adott tételt: p(x=1) = 0,5. A modell tehát egy tétel nehézségét az alapján definiálja, milyen képességszintű személy válaszol rá helyesen 0,5-es valószínűséggel.

Az (1) exponenciális összefüggést átrendezve logaritmikus formába a következő egyenletet kapjuk:[3][4]

lnpij 1pij=θiδj (2)

Mint látjuk, a képesség- és nehézségparaméter értékének különbsége (az egyenlet jobb oldala) megegyezik annak a törtnek a természetes alapú logaritmusával, melynek számlálója i személy j itemre vonatkozó helyes válaszadásának valószínűsége (pi,j), nevezője pedig ugyanezen helyzetben érkező helytelen válasz valószínűsége (1-pi,j). E törtet a válaszadás odds-ának nevezzük, logaritmusát pedig logitnak.

Tehát ha például i személy képessége meghaladja azt, amit j feladat elvár (θi > δj), akkor helyes válaszadásának valószínűsége a 0,5-ről elmozdul 1 felé. A (2) egyenlet ezt számszerűsíti: amennyiben ismerjük a személy képessége és a tételnehézség közötti különbség értékét, akkor a képlet megadja azt a valószínűséget, mellyel a személy helyesen oldja meg a tételt. Például: ha i személy képességszintje 2 logitegység, j tétel nehézsége pedig 1 logitegység, akkor i helyes válaszadásának valószínűsége p(x=1) ≈ 0,731. Azt is láthatjuk, hogy a két paraméter egymáshoz viszonyított, relatív helyzetével dolgozik a modell, nem pedig a képesség- és nehézségszint abszolút értékeivel. Így ha egy személy képessége átlagos (vagyis θ=0), akkor a -1 logitegység nehézségű feladatot szintén 0,731-es valószínűséggel oldja meg helyesen a modell értelmében.

Képesség- és nehézségparaméterek meghatározása

Az eddig áttekintettekben ismert képességszintekkel és adott nehézségi értékű tételekkel dolgoztunk. Ezek kiszámítása egy meglévő adatmátrixból két-két lépésben történik:[5]

  1. Első lépésben kiszámítjuk a helyes válaszok arányát:
    1. Személyenként, minden i válaszadó személyre: a helyesen megválaszolt tételek számát elosztjuk az összes item számával.
    2. Hasonlóan járunk el minden j tétel esetében is: az adott tételre helyesen válaszolók számát elosztjuk az összes válaszoló számával.
  2. A második lépésben a modellből levezetett, alábbi összefüggések segítségével meghatározzuk a keresett paraméterértékeket:[2][3][5]
    1. A képességparaméter meghatározása (ahol θi jelöli i személy képességparaméterét, Pi pedig i személy helyes válaszainak és összes válaszának hányadosát, vagyis helyes válaszainak arányát): θi=lnPi 1Pi (3)
    2. A nehézségparaméter meghatározása (ahol δj jelöli j item nehézségparaméterét, Pj pedig a j itemen adott helyes válaszok arányát, vagyis a tételt helyesen megválaszolók számának és az összes válaszadó számának hányadosát): δj=lnPj 1Pj (4)

Rasch-modell alkalmazása

A paraméterek meghatározása a gyakorlatban

Az itt leírt műveleteket a pszichometriai gyakorlatban ma már statisztikai szoftverek végzik. A leggyakrabban használt programok a WINSTEP, RuMM2020 vagy a ConQuest.[10] Ezeken kívül is igen sok, akár ingyenesen elérhető szoftver áll rendelkezésünkre a Rasch-modellel (vagy más IRT modellekkel) való munkához. Ezekről bővebben angol nyelven a Psychometric software szócikkben vagy például az alábbi összefoglalóban tájékozódhatunk: Rasch Measurement Analysis Software Directory.

Milyen helyzetekben alkalmazzák a Rasch-modellt?

A Rasch-modellt számos különböző területen használják, például orvostudományokban,[10][11] marketing kutatásokban,[12] neveléstudományban.[9] A pszichometriában a tesztfejlesztés különböző fázisaiban alkalmazhatjuk: új mérőeszköz tételeinek kialakításakor, már létező teszt pszichometriai jellemzőinek ellenőrzésekor vagy akár számítógépes adaptív teszteléshez (Computer Adaptive Testing, CAT) szükséges tételcsomag összeállításakor. A Rasch-modell alkalmazása tulajdonképpen bármilyen olyan esetben indokolt lehet, ahol összetartozó ordinális szintű adatok értékei közötti különbséget szeretnék számszerűsíteni[10] (és az adatok eleget tesztnek a modell feltételeinek, illetve a modell illeszkedik az adatokhoz). Ilyen helyzet lehet például, ha összetartozó itemeket úgy veszik fel, hogy a skála/teszt nem minden tételét oldja meg minden kitöltő, de vannak olyan "horgony itemek", melyekhez minden résztvevőtől van adat,[3] és kíváncsiak a tételek, illetve kitöltő paramétereire.

Hivatkozások

Sablon:Hivatkozások

További információk

Molnár Gy. (2013). A Rasch-modell alkalmazási lehetőségei az empirikus kutatások gyakorlatában. Budapest:Gondolat Kiadó.

Horváth Gy. (1997). A modern tesztmodellek alkalmazása. Budapest: Akadémia Kiadó.

Rasch Measurement Analysis Software Directory

Kapcsolódó szócikkek

Klasszikus tesztelmélet

Maximum likelihood módszer

Pszichológiai statisztika

Statisztika

Georg Rasch

Item Response Theory

Logit

Odds

Psychometric software

  1. 1,0 1,1 1,2 Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen, Denmark: Danish Institute for Educational Research.
  2. 2,0 2,1 2,2 2,3 Horváth Gy. (1997). A modern tesztmodellek alkalmazása. Budapest: Akadémia Kiadó.
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 Molnár Gy. (2006). A Rasch-modell alkalmazása a társadalomtudományi kutatásokban. Iskolakultúra 2006(12), 99-113.
  4. 4,0 4,1 Zoanetti, N., Griffin, P. & Adams, R. (2001). Applications of Item Response Theory to identify and account for suspect rater data. University of Melbourne.
  5. 5,0 5,1 5,2 5,3 5,4 5,5 5,6 Furr, R. M. & Bacharach, V. R. (2007). Item Response Theory and Rasch Modells. In Psychometrich: An introduction. (p. 313-334) Los Angeles, CA: Sage Publisher.
  6. Andersen, E. B. (2012). Some New and Some Old Results for the Polytomous Rasch Model. In W. Gaul & G. Ritter (Eds.), Classification, Automation, and New Media (p. 17-28). Berlin: Springer Science & Business Media.
  7. Fischer, G. H., & Molenaar, I. W. (Eds.). (2012). Rasch models: Foundations, recent developments, and applications. New York: Springer Science & Business Media.
  8. Rost, J. (2001). The growing family of Rasch models. In A. Boomsma, M. Duijn, T. Snijders (Eds.), Essays on item response theory (p. 25-42). New York: Springer.
  9. 9,0 9,1 9,2 9,3 9,4 Molnár Gy. (2005). Az objektív mérés lehetősége: A Rasch-modell. Iskolakultúra 2005(3), 71-80.
  10. 10,0 10,1 10,2 10,3 Tennant, A. & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper?. Arthritis Care & Research, 57(8), 1358-1362.
  11. Bezruczko, N. (2005). Rasch measurement in health sciences. Maple Grove, Maple Grove, MN: Jam Press. idézi: Rasch model
  12. Bechtel, G. G. (1985). Generalizing the Rasch model for consumer rating scales. Marketing Science, 4(1), 62-73., idézi: Rasch model