Létragráf

Innen: testwiki
Ugrás a navigációhoz Ugrás a kereséshez

Sablon:Gráf infobox A matematika, azon belül a gráfelmélet területén az Ln-nel jelölt létragráf (ladder graph) egy 2n csúccsal és 3n−2 éllel rendelkező összefüggő, irányítatlan, síkbarajzolható gráf.[1]

A létragráf előállítható két útgráf Descartes-szorzataként, amennyiben az egyik útgráf csak egyetlen éllel rendelkezik: Ln,1 = Pn × P2.[2][3]

Tulajdonságok

A konstrukciós szabály alapján nyilvánvaló, hogy az Ln létragráf a G2,n rácsgráffal izomorf, és valóban emlékeztet egy n fokkal rendelkező létrára. Rendelkezik Hamilton-körrel, girthparamétere 4 (ha n>1), élkromatikus száma pedig 3 (ha n>2). A gráf négy sarki helyzetű csúcsának fokszáma 2, a többi csúcsé 3. Az Ln létragráf teljes párosításainak száma megegyezik az Fn+1 Fibonacci-számmal.

A létragráf kromatikus száma 2, kromatikus polinomja pedig (x1)x(x23x+3)(n1).

Az L1, L2, L3, L4 és L5 létragráfok.

Létrafok-gráf

Néha létragráf alatt az n × P2 létrafok-gráfot (ladder rung graph) értik, azaz n db 2 hosszúságú útgráf diszjunkt unióját.

Az LR1, LR2, LR3, LR4 és LR5 létrafok-gráfok.

Sablon:-

Körkörös létragráf

A létragráf négy 2 fokszámú csúcsát egyenesen összekötve, avagy egy n≥3 hosszúságú kör és egy él Descartes-szorzatával a körkörös létragráf (circular ladder graph), CLn áll elő.[4]

Szimbolikusan: CLn = Cn × P1.

A körkörös létragráf 2n csúccsal és 3n éllel rendelkező, összefüggő síkbarajzolható gráf Hamilton-körrel, de kizárólag akkor páros, ha n páros.

A körkörös létragráfok a hasábok poliédergráfjai, ezért hasábgráfnak is nevezik őket.

Körkörös létragráfok:


CL3

CL4

CL5

CL6

CL7

CL8

Möbius-létragráf

Sablon:Fő Egy létragráf négy 2 fokszámú csúcsát keresztben összekötve 3-reguláris gráf jön létre, amit Möbius-létrának neveznek.

Az M16 Möbius-létra két nézete.

Sablon:Clear

Fordítás

Jegyzetek

Sablon:Reflist

  1. Sablon:MathWorld
  2. Hosoya, H. and Harary, F. "On the Matching Properties of Three Fence Graphs." J. Math. Chem. 12, 211-218, 1993.
  3. Noy, M. and Ribó, A. "Recursively Constructible Families of Graphs." Adv. Appl. Math. 32, 350-363, 2004.
  4. Sablon:Cite journal