Diffúziós egyenlet
A diffúziós egyenlet az anyagban végbemenő diffúziós folyamat dinamikai sűrűségét leíró parciális differenciálegyenlet. A diffúziós egyenlet a diffúziószerű viselkedés leírására – például az allélek diffúziója a populációgenetikában[1] – is használható.
Képlet
ahol ϕ(r, t), az r helyen lévő anyag sűrűsége, t , az idő, és D(ϕ, r) a együttes diffúziós együttható az r helyen lévő ϕ sűrűségnél, és ∇ reprezentálja a vektor differenciáloperátort. Ha a diffúziós együttható függ a sűrűségtől, akkor az egyenlet nemlineáris, máskülönben lineáris. Még általánosabban, ha D szimmetrikus pozitív definit mátrix, akkor az egyenlet anizotróp (lásd izotrópia) diffúziót ír le, melynek képlete (háromdimenziós diffúzió):
Ha D konstans, akkor az egyenlet a következő lineáris differenciálegyenletté egyszerűsödik: melyet hőegyenletnek is hívnak.
Történet
A diffúziós egyenlet eredete visszanyúlik az Fick-féle részecskékre vonatkozó diffúziós egyenletre, melyet Adolf Fick állított fel 1855-ben.[2] A diffúziós egyenletnek nagyszámú analitikus megoldása ismert[3][4]
Diszkretizálás
A diffúziós egyenlet mind térben, mind időben, folytonos. Lehetséges diszkretizálni térben és időben vagy külön-külön, az alkalmazástól függően. A diszkretizálásra akkor van főleg szükség, ha digitális számítógépen történik a további felhasználás. A diszkretizáláskor időszeletekre bontjuk a folytonos függvényt, mely nem befolyásolja a jelenséget. Ha csak a térben történik a diszkretizálás, akkor a diszkrét Gauss-kernel alkalmazható. Ha térben és időben egyszerre diszkretizálunk, akkor a véletlenszerű mozgás (bolyongás) módszere használható.
Kapcsolódó szócikkek
Jegyzetek
- ↑ Sablon:Cite web
- ↑ A. Fick, Ueber Diffusion, Pogg. Ann. Phys. Chem. 170 (4. Reihe 94), 59-86 (1855).
- ↑ Sablon:Cite journal
- ↑ Sablon:Cite journal
További információk
- Sablon:CitLib
- Ghez, R: Diffusion Phenomena. Long Island, NY, USA: Dover Publication Inc. 2001.
- Thambynayagam, R.K.M: The Diffusion Handbook: Applied Solutions for Engineers. New York: McGraw-Hill. 2011.
- Bennett, T.D: Transport by Advection and Diffusion. John Wiley & Sons. 2013.
- Gillespie, D.T.; Seitaridou, E: Simple Brownian Diffusion. Oxford University Press. 2013.
- Vogel, G: Adventure Diffusion. Springer. 2019.
- Newman, J and Battaglia J: The Newman Lectures on Transport Phenomena. New York: Jenny Stanford Publishing
- Sablon:CitLib