Lapultság

Innen: testwiki
A lap korábbi változatát látod, amilyen imported>Kempi 2022. szeptember 28., 01:55-kor történt szerkesztése után volt. (Visszaállítottam a lap korábbi változatát 176.77.141.182 (vita) szerkesztéséről Texvc2LaTeXBot szerkesztésére)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez

Az X valószínűségi változó lapultsága vagy lapultsági mutatója (esetenként csúcsossága vagy csúcsossági együtthatója) lényegében azt fogalmazza meg, hogy a valószínűségi változó sűrűségfüggvényének "csúcsossága" vagy "lapossága" hogyan viszonyul a normális eloszláséhoz. A precíz matematikai megfogalmazás a következő: az m várható értékű X valószínűségi változó lapultsága az

𝐄[(Xm)4](𝐄[(Xm)2])23

kifejezés értékével egyenlő, ahol E[·] a várható értéket jelöli. Úgy is fogalmazhatjuk, hogy a lapultság a negyedik centrális momentum és a variancia négyzetének a hányadosánál pont hárommal kisebb szám.

A lapultságot a magyar szakirodalom nem egységesen jelöli: időnként β2-vel, máskor γ2-vel.

Szemléletesen úgy jellemezhetjük ezt a mutatót, hogy

  • normális eloszlás esetén β2 = 0
  • normális eloszlás "haranggörbe"-szerű sűrűségfüggvényénél "csúcsosabb" sűrűségfüggvényű eloszlások esetén β2 > 0,
  • annál "laposabb" sűrűségfüggvényű eloszlások esetén β2 < 0.

Források

  • Fazekas I. (szerk.) (2000): Bevezetés a matematikai statisztikába. Kossuth Egyetemi Kiadó, Debrecen.
  • Hunyadi L. - Vita L. (2006), Statisztika közgazdászoknak, KSH, Sablon:ISBN
  • Michelberger P. – Szeidl L. – Várlaki P. (2001): Alkalmazott folyamatstatisztika és idősor-analízis. Typotex Kiadó, Budapest.
  • Vargha A. (2000): Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal. Pólya Kiadó, Budapest.