Newton-féle gravitációs törvény

Innen: testwiki
A lap korábbi változatát látod, amilyen imported>InternetArchiveBot 2023. december 15., 08:17-kor történt szerkesztése után volt. (Link hozzáadása egy könyvforráshoz az ellenőrizhetőségért (20231214)) #IABot (v2.0.9.5) (GreenC bot)
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Ugrás a navigációhoz Ugrás a kereséshez

A Newton-féle gravitációs törvény szerint bármely két test kölcsönösen vonzza egymást. Két pontszerűnek tekinthető test között ez az erő egyenesen arányos a tömegek szorzatával, és fordítottan arányos a köztük lévő távolság négyzetével.

Newton a tapasztalati megfigyelésekből indukcióval levezetett összefüggést arányosság formájában fogalmazta meg[1] és a Philosophiae Naturalis Principia Mathematica művében publikálta 1687. július 5-én. Amikor a Royal Society előtt bemutatta könyvét, Robert Hooke azt állította, hogy Newton tőle vette át az inverz négyzetes törvényt.

A klasszikus mechanikában ma használt összefüggés szerint a két pontszerű test közötti erőhatás a két testet összekötő egyenes mentén hat és nagysága:

F=Gm1m2r2 

ahol:

  • F a gravitációs erő,
  • G a gravitációs állandó,
  • m1 az egyik test tömege,
  • m2 a másik test tömege
  • r a tömegek középpontja közötti távolság
  • F1 = F2
Newton-törvény

SI-mértékegységrendszer ben a mértékegységek:

  • FNewton (N)
  • m1 és m2kilogramm (kg)
  • rméter
  • G – ma elfogadott értéke:[2]=(6,67384±0,0008)×1011 N m2 kg2 ,

Newton maga nem írta fel így ezt az összefüggést, nem vezette be és nem is mérte meg a G értékét. Henry Cavendish brit fizikus 1798-ban állított össze először egy olyan kísérleti elrendezést, ami alkalmas lehetett a gravitációs állandó értékének meghatározására[3]

A Newton-féle gravitációs törvény formailag hasonlít a Coulomb-törvényhez, mely két töltött részecske közötti elektromos erőhatásról szól. Mindkettő inverz négyzetes törvény, ahol az erő fordítottan arányos a távolság négyzetével.

A gravitáció jelenségének - az extrém sűrű és nagy tömegek esetén is érvényes - általánosabb leírását Albert Einstein általános relativitáselmélete adja, de a gyenge kölcsönhatások és a kis sebességű mozgások esetén a Newton-féle leírás is jól használható. Az általános relativitáselmélet határesetként visszaadja a Newton-féle gravitációs törvényt.

Térbeli kiterjedésű testek esete

Gravitáció a Föld belsejében
Gravitáció egy szobában

Ha a gravitáció kiszámításánál nem tekinthetünk el attól, hogy a vizsgált testek térbeli kiterjedésűek, azaz nem tekinthetjük őket pontszerűnek, akkor a testek között ébredő gravitációs erőt vektori összegzéssel, a teljes testre kiterjesztett integrálással kell kiszámolni.[4]

A Föld teljes gravitációs erőtere jó közelítéssel gömbszimmetrikus, de egy szobányi térrészben párhuzamos erővonalakkal leírható homogén erőtérnek is tekinthetjük

Problémák a Newton-féle elmélettel

Newton leírása a gravitációról elegendően pontos a legtöbb gyakorlati esetben, és ezért széles körben használják. Az eltérés kicsi, ha a dimenzió nélküli mennyiségek, φ/c2 és (v/c)2 jóval kisebbek mint 1, ahol a φ a gravitációs potenciál, a v, a tárgy sebessége, c, a fény sebessége.[5]

Például, a Newton-féle gravitációs törvény elegendően pontos leírást ad a Föld/Nap rendszerről: Φc2=GMsunrorbitc2108,(vEarthc)2=(2πrorbit(1 yr)c)2108

ahol rorbit a Nap körül keringő Föld keringési sugara.

Azokban az esetekben, amikor a dimenzió nélküli paraméterek nagyok, az általános relativitáselmélet írja le jobban a rendszert. Kis gravitációs erők és sebességek esetében az általános relativitáselmélet a Newton-féle gravitációs törvényre egyszerűsödik le, ezért azt szokták mondani, hogy a Newton-féle törvény az általános relativitáselmélet kis gravitációkra érvényes határesete.

Irodalom

Kapcsolódó szócikkek

Külső hivatkozások

Jegyzetek

Sablon:Jegyzetek

Fordítás

Sablon:Nemzetközi katalógusok

fi:Painovoima#Newtonin laki vetovoimasta

  1. Isaac Newton: "In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction": "Principia", Book 3, General Scholium, at p.392 in Volume 2 of Andrew Motte's English translation published 1729.
  2. http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf
  3. The Michell-Cavendish Experiment Sablon:Wayback, Laurent Hodges
  4. - Proposition 75, Theorem 35: p.956 - I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 Sablon:ISBN Sablon:ISBN
  5. Sablon:Cite book Page 1049.