Ez a fájl a Wikimedia Commons megosztott tárhelyről származik, és más projektek is használhatják.
A fájl ottani leírólapjának másolata alább látható.
Összefoglaló
LeírásPrime number theorem ratio convergence.svg
English: A plot showing how two estimates described by the prime number theorem, and converge asymptotically towards , the number of primes less than x. The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The former estimate converges extremely slowly, while the latter has visually converged on this plot by 108. Source used to generate this chart is shown below.
Az a személy, aki ezen nyilatkozat hatálya alá helyezett egy művet, az egész világon lemondott minden, a szerzői jogi törvény szerinti műhöz fűződő jogáról, beleértve az összes kapcsolódó és szomszédos jogot is, a jogszabályokban megengedett mértékig. Ezzel a művet közkinccsé nyilvánította. Ezt a művet szabadon másolhatod, módosíthatod, terjesztheted vagy előadhatod, akár üzleti célból is, mindezt anélkül hogy engedélyt kellene kérned.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Source
All source released under CC0 waiver.
Mathematica source to generate graph (which was then saved as SVG from Mathematica):
(* Sample both functions at 600 logarithmically spaced points between \
1 and 2^40 *)
base = N[E^(24 Log[10]/600)];
ratios = Table[{Round[base^x],
N[PrimePi[Round[base^x]]/(base^x/(x*Log[base]))]}, {x, 1,
Floor[40/Log[2, base]]}];
ratiosli =
Table[{Round[base^x],
N[PrimePi[
Round[base^x]]/(LogIntegral[base^x] - LogIntegral[2])]}, {x,
Ceiling[Log[base, 2]], Floor[40/Log[2, base]]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
29844570422669}, {10^16, 279238341033925}, {10^17,
2623557157654233}, {10^18, 24739954287740860}, {10^19,
234057667276344607}, {10^20, 2220819602560918840}, {10^21,
21127269486018731928}, {10^22, 201467286689315906290}, {10^23,
1925320391606803968923}, {10^24, 18435599767349200867866}};
ratios2 =
Join[ratios,
Map[{#[[1]], N[#[[2]]]/(#[[1]]/(Log[#[[1]]]))} &, LargePiPrime]];
ratiosli2 =
Join[ratiosli,
Map[{#[[1]], N[#[[2]]]/(LogIntegral[#[[1]]] - LogIntegral[2])} &,
LargePiPrime]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[LogLinearPlot[1, {x, 1, 10^24}, PlotRange -> {0.8, 1.25}],
ListLogLinearPlot[{ratios2, ratiosli2}, Joined -> True],
LabelStyle -> FontSize -> 14]
These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.
Képaláírások
Adj meg egy egysoros magyarázatot arról, hogy mit mutat be ez a fájl