Hölder-egyenlőtlenség
A Hölder-egyenlőtlenség a következő állítás: ha nemnegatív valós számok, , továbbá teljesül, akkor
Egyenlőség akkor teljesül, ha valamelyik sorozat konstansszorosa a másiknak, tehát például van olyan , hogy minden i-re.
A tétel -re vonatkozó esete a Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség.
Bizonyítása
Legyen
továbbá
Ekkor tehát és azt kell igazolnunk, hogy
A számtani és mértani közép közötti egyenlőtlenség súlyozott formája miatt minden i-re
ezeket összeadva azt kapjuk, hogy
Egyenlőség akkor van, ha minden i-re, azaz , ahol .
Története
Először Rogers igazolt egy ekvivalens állítást 1888-ban,[1] majd Hölder, szintén különböző, de ekvivalens formában, 1889-ben.[2] Mai formájában Riesz Frigyes mondta ki 1910-ben.[3]